

B. Sc. (Physics, Mathematics, Computer Science)

 $III^{rd}\; year \, / \, V^{th} \; \; Semester$

(Computer Science, Mathematics)

C No.	Course		Type of		Per Pe wee		Eval	luatio	n Scher	ne	Sub.		Total			Attrib					
S. No.	code	Course Title	Paper	L	т	Р	ст	TA	Total	ESE				Employability	Entrepreneurship	Skill Development	Gender Equality	Environment & Sustainability	Human Value	Professional Ethics	SDG
THEOF																					
1		Object Oriented Programming Using Java	Core	3	1	0	40	20	60	40	100	3:1:0	4	~		V					9 NORSTRY, MADVALIBH AND HEFASTBUCTURE
2		Fundamentals of Software Engineering	Core	3	1	0	40	20	60	40	100	3:1:0	4			√ 					4 GUALITY EDUCATION 9 ANN INFORMATION AND INF
3			Core	2	1	0	40	20	60	40	100	2:1:0	3			V					4 GUNLITY DUCATION 9 MAINTER ASTRUCTURE AND THE ASTRUCTURE
4	MT301	Advanced Calculus	Core	3	1	0	40	20	60	40	100	3:1:0	4	V		V					9 AND INFOASTRUCTURE
5		Mathematical Statistics	Core	3	1	0	40	20	60	40	100	3:1: 0	4	\checkmark		√ 					12 RESPONSIBILE AMPRODUCTION
		Number Theory	Core	2	1	0	40	20	60	40	100	2:1: 0	3	$\sqrt{}$		√					9 INDUSTRY INNOVATION AND INFRASTRIBUTURE
PRAC	CTICAL									1	ı	T				,					
7		Statistical Techniques Lab	Practical	0	0	2	40	20	60	40	100	0:0:1	1	V		V					12 RESPONSELE CONSUMPTION AND PRODUCTION
8		Object Oriented Programming using Java Lab	Practical	0	0	2	40	20	60	40	100	0:0:1	1	V		V					9 RECEIV INFORMATION AND INFORMATION
		TOTAL		16	6	4	320	160	480	320	800	24	24								

B. Sc. (Physics, Mathematics, Computer Science)

 $III^{rd}\; year \, / \, V^{th} \; \; Semester$

(Physics, Computer Science)

				hr	Perio Pe weel/		Evaluat	tion Sche	eme							Attribu	ites				
S. No.	Course code	Course Title	Type of Paper	L	т	Р	СТ	TA	Total	ESE	Sub. Total	Credit	Total Credits	Employabili ty	Entreprene urship	Skill Developme nt	Gender Equalit Y	Environ ment & I Sustain ability	Human	Profess ional Ethics	SDG
THEC	RIES																				
1		Elements Of Quantum Mechanics, Atomic & Molecular Spectra	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧					4 QUALITY EDUCATION
2		Classical Mechanics, Relativity & Statistical Physics	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧					4 COUCATION
3		Solid State, Nuclear & Particle Physics	Core	2	1	0	40	20	60	40	100	2:1:0	3	٧		٧					4 COUGATION
4		Object Oriented programming using Java	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧					9 INDUSTRY, INNOVATION AND INTRASTRUCTURE
5		Fundamentals of Software Engineering	Core	3	1	0	40	20	60	40	100	3:1: 0	4			V					4 CUALITY EDUCATION 9 RECISELY MATURATION AND INFRASTRIBUTURE
6		Computer Graphics & Multimedia	Core	2	1	0	40	20	60	40	100	2:1:	3			٧					4 COLLITY EQUICATION 9 NANCHIEV NOVAZION AND SPRACTISCUSE
PRAC	TICAL																				
7		Advance Electricity & Magnetism Lab	Practic al	0	0	2	40	20	60	40	100	0:0:1	1	٧		٧					12 RESPONSIBLE CONSUMPTION AND PRODUCTION
8		Object Oriented programming using Java Lab	Practic al	0	0	2	40	20	60	40	100	0:0:1	1	٧		٧					9 INDUSTRY INNOVATION AND INFRASTRUCTURE
		TOTAL	_	16	6	4	320	160	480	320	800	24	24								

B. Sc. (Physics, Mathematics, Computer Science)

IIIrd year / Vth Semester

(Physics, Mathematics)

				hr	Period Per /week/s			Evalu	ation Sc	heme						At	tributes			
S. No.	Course code	Course Title	Type of Paper	_	т	P	ст	TA	Total	ESE	Sub. Total	Credit	Total Credit s	Employ ability	Entre prene urship	Developm	Gender Equalit	Human	Profes sional Ethics	SDG
THEORIES																				
1	PY301	Elements of Quantum Mechanics, Atomic & Molecular Spectra	Core	3	1	0	40	20	60	40	100	3:1:0	4	V		٧				4 CHALITY ESPECATION
2	PY302	Classical Mechanics, Relativity & Statistical Physics	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧				4 COUNTY GOVERNON
3	PY303	Solid State, Nuclear & Particle Physics	Core	2	1	0	40	20	60	40	100	2:1:0	3	٧		٧				4 CONDITY
4	MT301	Advanced Calculus	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧				9 MOUSTRY IMMOVATION AND BY RASTRUCTURE
5	MT302	Mathematical Statistics	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧				12 RESPONSE
6	MT303	Number Theory	Core	2	1	0	40	20	60	40	100	2:1:0	3	٧		٧				9 NOUTHEN HOUSE
PRACTICAL	ı		<u> </u>					ı ı				1		,						40 HISTORIAN
7	MT304	Statistical Techniques Lab	Practical	0	0	2	40	20	60	40	100	0:0:1	1	٧		٧				12 PESPONSIBLE CONSUMPRISON AND PRODUCTION
8	PY304	Advance Electricity & Magnetism Lab	Practical	0	0	2	40	20	60	40	100	0:0:1	1	٧		٧				12 <u></u>
		TOTAL		16	6	4	320	160	480	320	800	24	24							

Effective from Session: 2018	3-19	-					
Course Code	MT301	Title of the Course	Advanced Calculus	L	T	P	C
Year	Third	Semester	Fifth	3	1	0	4
Pre-Requisite	10+2 with Mathematics	Co-requisite					
Course Objectives	Students will be able to evaluate	ate derivative of several fun- grals. After successful comple	ic and key knowledge of different ctions using different techniques. The etion of course, the student will be	They v	vill also	learn	to

	Course Outcomes
CO1	Students will gain an understanding of Function of several variables, Domains and Range, Functional notation, Limits and continuity and differentiability. They will also learn to find Partial derivatives, Differential of functions of n variables, Differentials of composite functions by using the chain rule.
CO2	Students will be able to understand Implicit functions, Inverse functions, They will also study directional derivatives and will be able to find Partial derivatives of higher order, Higher derivatives of composite functions. They will learn to find Maxima and minima of functions of several variables.
CO3	Students will gain an understanding of Line integrals in the plane, Basic properties of Line integrals, Line integrals as integrals of vectors and will be able to solve line integral by Green's theorem, and get knowledge of independence of path, simply connected domains, Extension of result of multiply connected domains.
CO4	Students will create the own understanding and find Double integral over a rectangular region, Double integral as volume, Area of a region in a plane., Transformation of double integral from Cartesian to polar co - ordinate and vice versa. They will study triple integral and learn to solve them in Cartesian, cylindrical and spherical co – ordinate.
CO5	Students will gain an understanding of solution of Improper integrals, convergence of Camparison test, convergence of Abel's test, Dirichlet's test, convergence of. They will also study convergence of beta and gamma functions.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Function of several variables, Domains and Range, Functional notation, Limits and continuity and differentiability, Partial derivatives, Differential of functions of n variables, Differentials of composite functions, chain rule.	8	1
2		Implicit functions, Inverse functions, The directional derivatives, Partial derivatives of higher order, Higher derivatives of composite functions, Maxima and minima of functions of several variables.	8	2
3		Line integrals in the plane, Basic properties of Line integrals, Line integrals as integrals of vectors, Green's theorem, independence of path, simply connected domains, Extension of result of multiply connected domains.	8	3
4		Double integral over a rectangle region, Double integral as volume, Area of a region in a plane , Transformation of double integral from Cartesian to polar co - ordinate and vice versa, Triple integral in Cartesian , cylindrical and spherical co - ordinate .	8	4
5		Improper integrals, convergence of $\int_{a}^{\infty} f(x) dx$, Camparison test, convergence of $\int_{a}^{\infty} \frac{dx}{x^{n}} dx$, $a > 0$, Abel's test, Dirichlet's test, convergence of $\int_{a}^{\infty} \frac{dx}{(x-a)^{n}} dx$, $a > 0$, convergence of beta and gamma functions.	8	5

Reference Books:

- 1. G. B. Thomas, M.D. Wier, J. Hass: Calculus, Pearsons Education
- 2. S. C. Malik and S. Arora: Mathematical analysis, Wiley Eastern Ltd
- 3. D. V. Widder: Advanced Calculus, Prentice Hall of India Pvt. Ltd.

e-Learning Source:

- 1. https://nptel.ac.in/courses/111107108/
- 2. file:///C:/Users/Admin/Downloads/Vector%20Calculus%20by%20Krishna%20Series.pdf
- $3.\ https://www.academia.edu/8509213/Advanced_Calculus._Fifth_Edition-Wifred_Kaplan$

			(Course Ai	rticulation	Matrix: (Ma	pping of CO	s with PC	s and PSO	os)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO	101	102	103	104	103	100	107	1501	1502	1505	1504	1505
CO1	3	2	2	1	1	1	2	2	2	3	2	3
CO2	3	2	2	1	1	1	2	1	1	2	2	2
CO3	3	2	2	1	1	1	2	2	2	2	2	2
CO4	3	1	2	1	1	1	2	2	2	3	3	2
CO5	3	1	2	1	1	1	2	3	2	2	3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session	on: 2018-19	1					
Course Code	MT302	Title of the Course	Mathematical Statistics	L	T	P	C
Year	Third	Semester	Fifth	3	1	0	4
Pre-Requisite		Co-requisite					
Course Objectives	other fields of sciences. Our	ic concepts of modern statistics and its r everyday lives, as well as economic a- ues for quantifying these uncertainties practical applications.	nd business activities, are full of data	analys	is and	distribut	tion

		Course Outcomes		
CO1	secondary sou	I the definition and scope of Statistics, concepts of statistical population and sample. Quantitative and quarces of data collection, scales of measurement- nominal, ordinal, interval and ratio. Presentation of data gbar diagram, histogram, pie chart, frequency curve and frequency polygon		
CO2		Measures of Central Tendency: Arithmetic mean, median, mode, geometric mean and harmonic mean, of Dispersion: range, quartile deviation, mean deviation, standard deviation and variance, coefficient of variance, coefficien		
CO3	tied ranks. Sin	d Bivariate data: Definition, scatter diagram, Karl Pearson's coefficient of correlation Spearman coefficient ple linear regression, principle of least squares		
CO4	and multiplica	d Definitions of Probability – classical, statistical, and axiomatic, random experiments, sample space and ation, independent events, conditional Probability and Bayes' theorem		
CO5		d Mathematical expectation, Probability mass function (pmf) and Probability density function (pdf). Bino Poisson Probability distributions, and Normal Probability distributions.	mial Probabi	lity
Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		The definition and scope of Statistics, concepts of statistical population and sample. Quantitative and qualitative data, primary and secondary sources of data collection, scales of measurement- nominal, ordinal, interval and ratio. Presentation of data: tabular and graphical form including bar diagram, histogram, pie chart	8	1
2		Measures of Central Tendency: Arithmetic mean, median, mode, geometric mean and harmonic mean, quartiles and percentiles. Measures of Dispersion: range, quartile deviation, mean deviation, standard deviation and variance, coefficient of variation and coefficient of skewness	8	2
3		Bivariate data: Definition, scatter diagram, Karl Pearson's coefficient of correlation Spearman coefficient rank correlation and tied ranks. Simple linear regression, principle of least squares	8	3
4		Definitions of Probability – classical, statistical, and axiomatic, random experiments, sample space and events, laws of addition and multiplication, independent events, conditional Probability and Bayes' theorem	8	4
5		Mathematical expectation, Probability mass function (pmf) and Probability density function (pdf). Binomial Probability distributions, Poisson Probability distributions, and Normal Probability distributions	8	5
Referen	nce Books:			

- 1. Sampling techniques: W.G. Cochran, Wiley
- 2. Sampling methodologies and applications: P.S.R.S. Rao, Chapman and Hall/CRC 2000
- 3. Elements of sampling theory and methods: Z. Govindrajalu, Prentice Hall, 1999
- 4. Sampling: P. Mukhopadhyaya, Prentice Hall of India, 1998
- 5. Theory of sample surveys with applications: P.V.Sukhatme, B.V.Sukhatme, S. Sukhatme and C. Asok, IASRI, Delhi, 1984.
- 6. Sampling Techniques: Daroga Singh & Chaudhry, F.S New age International

e-Learning Source:

- 1. https://www.youtube.com/watch?v=be9e-Q-jC-0
- $2. \ https://www.youtube.com/watch?v=bQ5_PPRPjG4$
- 3. https://www.youtube.com/watch?v=jauhoR7w1YM

				Course A	rticulation	Matrix: (Ma	pping of CO)s with P(Os and PSC	Os)		
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	3	2	2	2	2	1	1	2	2	2
CO2	3	3	2	2	2	3	2	2	2	2	3	3
CO3	2	2	3	3	2	2	2	2	2	2	3	3
CO4	2	2	2	3	2	2	1	1	2	2	2	3
CO5	2	3	2	3	2	2	3	2	2	2	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session	on: 2018-19						
Course Code	MT303	Title of the Course	Number Theory	L	T	P	C
Year	Third	Semester	Fifth	2	1	0	3
Pre-Requisite	10+2 with PCM	Co-requisite					
Course Objectives	baggage often associated with	a more advanced courses gaged in the study of num	to some foundational ideas in number theory with the course provides students an opportunity to do ber theoretic results. The course is also designed to sing mathematics.	levelop	an app	oreciatio	

		Course Outcomes		
CO1	Can be able to demon Equivalence sets.	strate Cartesian product of sets, Equivalence relation and partition, Fundamental theorem of equi	valence of re	lation,
CO2		ge and understanding of topics including, but not limited to divisibility, cardinal numbers, congr ne equations and cantor's theorem.	uence's, quad	ratic
CO3	Can analyse hypothes factorization.	es and conclusions of mathematical statements of divisibility, congruence, greatest common divi	sor, prime, ar	nd prime
CO4	Can apply different te contradiction tie and l	chniques of congruence to verify mathematical assertions, including proof by induction, by contradiction.	rapositive and	l by
CO5	Can solve systems of	Diophantine equations using the Chinese Remainder Theorem & the Euclidean algorithm and La	grange's theo	rom
			grunge s unes	nem
Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
	Title of the Unit	Cartesian product of sets, Equivalence relation and partition, Fundamental theorem of	Contact Hrs.	Mapped
	Title of the Unit	Cartesian product of sets, Equivalence relation and partition, Fundamental theorem of equivalence of relation, Equivalence sets. Cardinal numbers, power of continuum, cardinal arithmetic, Inequalities in cardinals,	Contact	Mapped
No. 1	Title of the Unit	Cartesian product of sets, Equivalence relation and partition, Fundamental theorem of equivalence of relation, Equivalence sets.	Contact Hrs.	Mapped CO

Linear congruence, Chinese remainder theorem, problem based on Chinese remainder

4

5

Congruence, Complete residue theorem, Euler's theorem

theorem, Lagrange's theorem

Reference Books:

4

5

- 1. J Hunter: Number Theory
- 2. David M. Burton: Elementary Number Theory
- 3. Seymour Lipschutz: Set theory and related topics

e-Learning Source:

- 1. https://www.youtube.com/watch?v=SCvtxjpVQms
- 2. https://www.youtube.com/watch?v=-Qtl4nn7R4A

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1		3	1	1	1	2	3	3	2	2	3	2	3
CO2		3	2	1	1	2	1	3	1	1	3	2	2
CO3		2	2	1	1	2	1	3	2	2	2	1	2
CO4		3	2	2	1	1	1	1	2	2	2	3	3
CO5		3	2	1	1	2	1	3	3	2	2	3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 2018-19										
Course Code	MT304	Title of the Course	Statistical Techniques Lab	L	T	P	С			
Year	Third	Semester	Fifth	0	0	2	1			
Pre-Requisite		Co-requisite								
Course Objectives		s which are used to describe d	cal situations simultaneously to teach students to atta. To make students able to fit real time data on							

	Course Outcomes							
CO1	After completing Practical 1, students will be able to create visual representation of various types of data.							
CO2	After the completion of Practical 2, 3 and 4, students will be able to well describe the central value and variability of data. Students will also learn the method of comparison of variability between to or more data sets and to figure out the shape of the given data in terms of skewness and Kurtosis.							
CO3	After the completion of Practical 5, 6 & 7 students will be able to obtain the degree of relationship between two or more variables for qualitative and quantitative data both. Students will also be able to find out functional relationship between two or more variables.							
CO4	After the successful completion of Practical 8, students will be able to fit real data on a given Binomial distribution.							
CO5	After the successful completion of Practical 9 & 10, students will be able to fit real data on a given Poisson & Normal distribution.							

		Contact Hrs.	Mapped CO
Practical 1	Graphical representation (bar, histogram and pie chart) of data.	4	1
Practical 2	Problems based on measures of central tendency (Mean, median and mode).	4	2
Practical 3	Problems based on measures of dispersion (MD, SD and CV)	4	2
Practical 4	Problems based coefficient of skewness.	4	2
Practical 5	Karl Pearson correlation coefficient.	4	3
Practical 6	Lines of regression, angle between lines and estimated values of variables.	4	3
Practical 7	Problems based on Spearman rank correlation with and without ties.	4	3
Practical 8	Fitting of binomial distributions for n and p given	4	4
Practical 9	Fitting of Poisson distributions for given value of lambda	4	5
Practical 10	Fitting of Normal distribution for given value of mean and variance	4	5

Reference Books:

- 1. Goon A.M., Gupta M.K. and Dasgupta B. (2002): Fundamentals of statistics, Vol. I & II, 8th Edn. The World Press, Kolkata.
- 2. Miller, Irwin and Miller, Marylees (2006): John E. Freund's Mathematical Statistics with Applications, (7th Edn.), Pearson Education, Asia.
- 3. Mood, A.M. Graybill, F.A. and Boes, D.C. (2007): Introduction to the Theory of Statistics, 3rd Edn., (Reprint), Tata McGraw-Hill Pub. Co. Ltd.

e-Learning Source:

- 1. https://youtu.be/KIBZUk39ncI
- 2. https://www.youtube.com/watch?v=m9a6rg0tNSM
- 3. https://www.youtube.com/watch?v=nqPS29IvnHk
- 4. https://www.youtube.com/watch?v=JPK0LFsu18g
- 5. https://www.youtube.com/watch?v=vvv9DhUrzlY
- 6. https://www.youtube.com/watch?v=uq5w2aFwNhE&list=PLLgJVrtHe9RoB9LIZPuwv_zZNmGniGrai
- 7. https://www.youtube.com/watch?v=5lh1Wr5_1Q0&list=PLGihLBEp_66K6zl4QGMXIf-d1hcoXIQ0a

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	1	2	1	1	1	3	2	2	1	2	3		
CO2	3	1	2	1	2	1	3	3	3	2	2	1		
CO3	3	2	1	1	2	1	2	2	2	2	3	3		
CO4	2	1	1	1	2	1	3	2	2	3	3	2		
CO5	2	2	1	2	2	1	3	2	2	2	3	3		

Effective from Session: 2020	Effective from Session: 2020-21											
Course Code	PY301	Title of the Course	Elements of Quantum Mechanics, Atomic and Molecular Spectra	L	T	P	C					
Year	Third	Semester	Fifth	3	1	0	4					
Pre-Requisite	10+2 with Physics	Co-requisite										
Course Objectives		some o		sic								

	Course Outcomes
CO1	Would be able to analyze the inadequacies of classical mechanics in atomic domain and provide the understanding of quantum theory of light in order to analyze
COI	Blackbody Radiation.
CO2	Provided with the wavefunction of a system, students would be able to normalize it and determine the expectation values.
CO3	To solve the Schrodinger"s equation for time independent problems like free particle, particle in an infinite potential well, square potential well, the step
COS	potential and potential barrier.
CO4	It includes an understanding of LS and JJ coupling in order to be able to use appropriate quantum numbers for labelling of energy levels.
CO5	To analyze the origin of electronic, vibrational and rotational energy levels and undertake simple calculations of energy levels.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Matter Waves	Inadequacies of classical mechanics, black body radiation, theoretical laws of black body radiation, photoelectric phenomenon, Compton effect, Planck"s quantum hypothesis, development of quantum mechanics, Bohr"s quantization condition, wave particle duality, de- Broglie hypothesis, velocity of de-Broglie waves, phase and group velocities and their relationship for a non-relativistic particle.	08	CO1
2	Schrodinger Equation I	Heisenberg's uncertainty principle with derivation and its applications, ground state energy of Hydrogen atom & linear harmonic oscillator Basic postulates of quantum mechanics, Schrodinger Equation: time dependent and time independent form, Physical interpretation of the wave function, orthogonality and normalization of wave functions, basic problem related to wave function, probability current density, Ehrenfest theorem.	08	CO2
3	Schrodinger Equation II	Applications of Schrodinger wave equation: (free particle, a particle in 1-D infinitely deep potential well, a particle in 3-D infinitely deep potential well, 1-D linear harmonic oscillator, one dimensional motion in step potential, rectangular potential barrier, square well potential), expectation values of dynamical quantities, momentum space wave function.	08	CO3
4	Atomic spectra	Spectra of hydrogen, deuteron and alkali atoms, spectral terms, doublet fine structure, screening constants for alkali spectra for s, p, d, and f states, selection rules, Singlet and triplet fine structure in alkaline earth spectra, L-S and J-J couplings. Weak spectra: continuous X-ray spectrum and its dependence on voltage, Duane and Haunt's law. Characteristics X-rays, Moseley's law, doublet structure and screening parameters in X-ray spectra, X-ray absorption spectra.	08	CO4
5	Molecular spectra	Discrete set of electronic energies of molecules, quantization of vibrational and rotational energies, determination of internuclear distance, pure rotation and rotation- vibration spectra, Dissociation limit for the ground and other electronic states, transition rules for pure vibration and electronic vibration spectra.	08	CO5

Reference Books:

- 1. A. Beiser, "Perspectives of Modern Physics (McGraw Hill).
- 2. H. E. White; "Introduction to Atomic Physics (D. Van Nostrand Company)
- 3. R. P. Feynman, R. B. Leighton and M. Sands; "The Feynman Lectures on Physics, Vol. III (B I Publications. Bombay. Delhi, Calcutta, Madras).
- 4. Eisenberg and Resnick; "Quantum Physics of Atoms, "Molecules, Solids, Nuclei and Particles" (John Wiley).

e-Learning Source:

- 1. https://nptel.ac.in/courses/115/104/115104096/
- 2. https://nptel.ac.in/courses/115/102/115102023/
- 3. https://nptel.ac.in/courses/115/105/115105100/

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4		
CO	101	102	103	104	103	100	107	1501	1502	1503	1504		
CO1	3	2			1		1	3	1				
CO2	3	1			2		3	3	1				
CO3	3	1			2		3	3	1				
CO4	3	1			2		3	3	3	2			
CO5	3	1			2		3	3	3	2			

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 202	Effective from Session: 2020-21											
Course Code	PY302	Title of the Course	Classical Mechanics, Relativity and Statistical Physics	L	T	P	C					
Year	Third	Semester	Fifth	3	1	0	4					
Pre-Requisite	10+2 with Physics	Co-requisite										
Course Objectives		notion of rigid body, Lagrangian and Hamiltonian formulation theory and methods of statistical physics.	on of m	echanics	and to							

	Course Outcomes								
CO1	Students will gain an understanding of the Classical Mechanics and basic theories of Physics like Lagrangian and Hamiltonian Dynamics.								
CO2	Students will be able to develop a deep understanding of various phenomena of Special Theory of Relativity and concept of mass-energy equivalence.								
CO3	Students will be able to master basic statistical methods and concepts like probability, random variables, expected value, variance, estimators and common								
	probability distributions.								
CO4	Students will be able to write the distribution function of various systems and further calculate various thermodynamic potentials.								
CO5	Interpretation of Maxwellian distribution. Analysis of statistical mechanical description of Fermi- and Bose- statistics for electron and photon.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Lagrangian and Hamiltonian Dynamics	Constraints: holonomic and non-holonomic, time independent and time dependent, Generalized coordinates, Lagrange equations from D"Alembert"s principle, velocity dependent potentials, Variational principle: Technique of the calculus of variation, Hamilton"s variational principle, Lagrange equations using Hamilton"s principle, Generalized momenta, cyclic coordinates. Definition of Hamiltonian and its physical significance, Hamilton"s equations of motion from variational principle.	08	CO1
2	Special Theory of Relativity	Reference systems, inertial frames, Galilean invariance and conservation laws, propagation of light, Michelson-Morley experiment; search for ether, Postulates for the special theory of relativity, Lorentz transformations, length contraction, time dilation, velocity addition theorem, variation of mass with velocity, mass-energy equivalence, particle with a zero rest mass.	08	CO2
3	The Statistical Basis of Thermodynamics	Probability and thermodynamic probability, principle of equal a priori probabilities, probability distribution and its narrowing with increase in number of particles.	08	CO3
4	Some Universal Laws	The μ (mu)- space representation, division of μ (mu)- space into energy sheets and into phase cells of arbitrary size, applications to one-dimensional harmonic oscillator and free particles, Equilibrium before two systems in thermal contact, Probability and entropy, Boltzmann entropy relation, Statistical interpretation of second law of thermodynamics.	08	CO4
5	Quantum Statistical Mechanics	Maxwellian distribution of speeds in an ideal gas: Distribution of speeds and of velocities, experimental verification, distinction between mean, r.m.s. and most probable speed values. Transition to quantum statistics: "h" as a natural constant and" its implications, cases of particle in a one-dimensional box and one-dimensional harmonic oscillator, Indistinguishability of particles and its consequences, Bose-Einstein, and Fermi-Dirac distributions, photons in black body chamber, free electrons in a metal, Fermi level and Fermi energy.	08	CO5

Reference Books:

- 1. A. Beiser, "Concepts of Modern Physics" (McGraw-Hill).
- 2. B. B. Laud, "Introduction to Statistical Mechanics" (Macmillan 1981).
- 3. F. Reif, "Statistical Physics" (McGraw-Hill 1988).
- 4. K. Haung, "Statistical Physics" (Wiley Eastern, 1988).

e-Learning Source:

- 1. <u>https://nptel.ac.in/courses/115/106/115106123/</u>
- $2. \quad \underline{https://nptel.ac.in/courses/115/105/115105098}/$
- $3. \quad \underline{https://nptel.ac.in/courses/115/101/115101011}/\\$
- 4. https://nptel.ac.in/courses/104/101/104101125/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	102	100	10.	100	100	10,	1001	1002	1500	150.
CO1	3	2	1	1		1	2	3	1		
CO2	3	2	1	1		1	2	3	1		
CO3	3	1	1				1	3	1		
CO4	3	1				2	1	3	3	2	
CO5	3						2	3	3	2	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21										
Course Code	PY303	Title of the Course	Solid State, Nuclear and Particle Physics	L	T	P	С			
Year	Third	Semester	Fifth	2	1	0	3			
Pre-Requisite	10+2 with Physics	Co-requisite								
Course Objectives	principal of physics an	d mathematics to obtain qu	part basic and key knowledge of solid state, nuclear and part nantitative relations which are very important for higher stude explore subject into their respective dimensions				ne			

	Course Outcomes
CO1	Students will gain an understanding of crystal structure, diffraction and reciprocal lattice which help in determine the crystal structure of any material.
CO2	Students will gain an understanding of crystal bonding and the vibrations involved in crystal Lattice which help them to understand the concept of vibrational dynamics.
CO3	Students will gain an understanding of materials (metals and semiconductors) and able to find the band gap based on which they define the material type.
CO4	Students will understand the basic properties of nucleus, know about Nuclear Forces and Nuclear Reactions which helps in defining the type of nuclear reaction.
CO5	Students will gain basic knowledge of particle physics and ability to outline the physical origins of particle physics.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Crystal Structure	Lattice translation vectors and lattice, Symmetry operations, Basis and Crystal structure, Primitive Lattice cell, Two-dimensional lattice types, systems, Number of lattices, Number of Lattices, Index system for crystal planes, Miller indices, Simple crystal structures, NaCl, hcp, diamond. Bragg's law, experimental diffraction method, Laue method, rotating crystal method, powder method.	08	CO1
2	Crystal Bonding and Lattice Structure	Crystal of inert gases, Van der Walls-London interaction, repulsive interaction, Equilibrium lattice constants, Cohesive energy, compressibility and bulk modulus, ionic crystal, Madelung energy, evaluation of Madelung constant, Covalent crystals, Hydrogen-bonded crystals, Atomic radii. Lattice Heat capacity, Einstein model. Vibrations of monatomic lattice, derivation of dispersion relation, Force constants, Lattice with two atoms per primitive cell.	08	CO2
3	Band Theory	Hall effect (metals and semiconductors), Origin of band theory, Kronig-Penney model, Number of orbitals in a band, conductor, Semi-conductor and insulators, Effective mass, Concept of holes.	08	CO3
4	Nuclear Physics	General Properties of Nucleus: Brief survey of general Properties of the Nucleus, Mass defect and binding energy, charges, Size, Spin and Magnetic moment. Nuclear Forces: Saturation phenomena and Exchange forces, Deuteron ground state properties. Nuclear Reactions: Nuclear reactions and their conservation laws, Cross section of nuclear reactions, Theory of fission (Qualitative), Nuclear reactors and Nuclear fusion.	08	CO4
5	Particle Physics	Basic particle interactions (gravitational, Electromagnetic, week and strong interactions), Basic classification based on rest mass, Spin and half-life, particles and antiparticles, idea of resonances, conservation rules in fundamental interactions, determination of spin and parity of pions, strange particles.	08	CO5

Reference Books:

- 1. Puri and Babbar, "Solid State Physics" (S. Chand).
- 2. C. Kittel, "Introduction to Solid State Physics"- Vth Edition (John Wiley &Sons).
- 3. H. S. Mani and G. K. Mehta, "Introduction to Modern Physics" (Affiliated East-West Press—1989).
- 4. A. Beiser, "Perspectives of Modern Physics" (McGraw-Hill).
- 5. Martin, B.R. and Shaw, Particle Physics (John Wiley).

e-Learning Source:

- 1. https://nptel.ac.in/courses/115/104/115104109/
- 2. https://nptel.ac.in/courses/115/105/115105099/
- 3. https://nptel.ac.in/courses/115/103/115103101/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	1	1		2	1	1	3	1	2	2
CO2	3	1	2		3	1	1	3	1	2	
CO3	3	1	2		3	1	1	3	1	1	
CO4	3	1			2	1		3	3		2
CO5	3	1			2	1		3	3		

Effective from Session: 2020-21										
Course Code	PY304	Title of the Course	Advance Electricity and Magnetism Lab	L	T	P	С			
Year	Third	Semester	Fifth	0	0	2	1			
Pre-Requisite	10+2 with Physics	Co-requisite								
Course Objectives	The purpose of experiments.	ne purpose of this undergraduate course is to impart practical knowledge/measurements in electricity and magnetism through different periments								

	Course Outcomes								
CO1	To understand the concept of the charging and discharging of RC and LCR circuits and concept of Lissajous figures using a CRO								
CO2	To understand the working and response of PV and Solar cell and determining the fill factor								
CO3	To use ballistics galvanometer for various applications.								
CO4	To understand the concept of decay of currents in LR and RC circuits and hence estimate the resonancefrequency and quality factor								
CO5	Implement bridges for various applications.								

Experiment No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO
1	Charging and discharging of RC and LCR circuits	To study the charging and discharging of RC and LCR circuits.	2	CO1
2	Lissajous figures using a CRO	To study of Lissajous figures using a CRO.	2	CO1
3	Solar Cell	To study the spectral response of a solar cell.	2	CO2
4	Calibration of B.G.	To calibrate a ballistic galvanometer with a standard solenoid and then to find out ballistic constant.		CO3
5	Hall Probe Method	Hall Probe Method for measurement of magnetic Field.		CO3
6	Study of LR and RC circuits	Study of decay of currents in LR and RC circuits.	2	CO4
7	Frequency Response of LCR circuit	To study the response curve for LCR circuit and hence estimate the resonance frequency and quality factor.		CO4
8	Wien's Bridge	To determine the capacitance of a condenser by Wien's bridge.	2	CO5
9	Photo Cell	To draw the characteristic of a photoelectric cell.	2	CO2
10	Time Constant	To study Time constant in a LR circuit.	2	CO4

Reference Books:

- 1. Practical Physics. by R. K. Shukla, New Age International Private Limited; Third edition.
- 2. B.Sc. Practical Physics by Harnam Singh and Hemme, S. Chand.
- 3. B. Sc. Practical Physics by CL Arora, S Chand & Company.
- 4. Practical Physics by Kumar P.R.S., Prentice Hall India Learning Private Limited

e-Learning Source:

- $1. \ \underline{https://www.exploratorium.edu/snacks/subject/electricity-and-magnetism}$
- $2. \ \underline{https://ocw.mit.edu/courses/physics/8-02-physics-ii-electricity-and-magnetism-spring-2007/experiments/2007/experimen$
- 3. http://www.rossnazirullah.com/BSc/BSc.htm

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	102	100	101	100	100	107	1501	1502	1500	1501
CO1	3	2	1		3	1	2	1		1	3
CO2	2	1	3		2	2	3	2		1	3
CO3	3	2	2		3	3	2	3		2	3
CO4	2	3	3		1	2	3	3		3	3
CO5	3	2	1		3	1	2	2		1	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-17											
Course Code	CS321	Title of the Course	Object Oriented Programming Using java	L	T	P	C				
Year	3RD	Semester	5 TH	3	1	0	4				
Pre-Requisite	10+2 with Physics	Co-requisite									
Course Objectives											

	Course Outcomes							
CO1	Use an integrated development environment to write, compile, run, and test simple object-oriented Java programs							
CO2	Read and make elementary modifications to Java programs that solve real-world problems.							
CO3	Validate input in a Java program							
CO4	Identify and fix defects and common security issues in code.							
CO5	Document a Java program using Javadoc.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Flavors of Java, Java Designing Goal, Role of Java Programmer in Industry, Features of Java Language, JVM –The heart of Java, Java's Magic Byte code, Installing Java, Java Program Development, Java Source File Structure, Compilation, Executions. Basic Language Elements: Lexical Tokens, Identifiers, Keywords, Literals, Comments, Primitive Data types, Operators Assignments	8	1
2	Object Oriented Programming	Class Fundamentals, Object & Object reference, Object Life time & Garbage Collection, Creating and Operating Objects, Constructor & initialization code block, Access Control, Modifiers, methods Nested, Inner Class & Anonymous Classes, Abstract Class & Interfaces Defining Methods, Argument Passing Mechanism, Method Overloading, Recursion, Dealing with Static Members, Finalize() Method, Native Method. Use of "this" reference, Use of Modifiers with Classes & Methods, shallow and deep cloning, Generic Class Types.	8	2
3	Extending Classes and Inheritance	Use and Benefits of Inheritance in OOP, Types of Inheritance in Java, Inheriting Data members and Methods, Role of Constructors in inheritance, Overriding Super Class Methods, Use of "super", Polymorphism in inheritance, Type Compatibility and Conversion Implementing interfaces. Package: Organizing Classes and Interfaces in Packages, Package as Access Protection, Defining Package, CLASSPATH Setting for Packages	8	3
4	Exception Handling	The Idea behind Exception, Exceptions & Errors, Types of Exception, Control Flow In Exceptions, JVM reaction to Exceptions, Use of try, catch, finally, throw, throws in Exception Handling, Inbuilt and User Defined Exceptions, Checked and Un-Checked Exceptions. Array & String: Defining an Array, Initializing & Accessing Array, Multi—Dimensional Array, Operation on String, Mutable & Immutable String, Creating Strings using StringBuffer.	8	4
5	I/O classes	Understanding Threads , Needs of Multi-Threaded Programming ,Thread Life-Cycle, Thread Priorities ,Synchronizing Threads . I/O Classes :Input/Output Operation in Java(java.io Package),Streams and the new I/O Capabilities ,Understanding Streams, The Classes for Input and Output, The Standard Streams, Working with File Object, File I/O Basics, Reading and Writing to Files, Buffer and Buffer Management, Read/Write Operations with File Channel, Serializing Objects.	8	5

Reference Books:

- 1. Naughton, Schildt, "The Complete Reference JAVA2", TMH
- 2. Balagurusamy E, "Programming in JAVA", TMH
- 3. "Head First Java" by Kathe Sierra.
- 4. "A Beginner's Guide (Sixth Edition)" by Herbert Schildt

e-Learning Source:

www.java2s.com

 $\underline{www.edx.org}$

www.udemy.com

www.learnjavaonline.org

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	2	2	1		3	1	2		3		3		3		1	3	1
CO2	2	2	2		3	1	1	3		2	1	3	2	1	3			
CO3	3	1	3	2	2	2			3		2	2	3		1	2	1	2
CO4	2	2	2	2	1	1	3		2	3	3	1	1	2	3			3
CO5	2	3	2	2	3	3	3			2	2	3		1		3	2	

		4.7	<i>≥</i> /									
Effective from Session: 2018-2019												
Course Code	CS322	Title of the Course	Object Oriented Programming using Java Lab	L	T	P	C					
Year	Third	Semester	Fifth	0	0	4	2					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	Basic concep	asic concepts and techniques which form the object oriented programming paradigm Using java.										

	Course Outcomes							
CO1	To implement concepts data type and arrays							
CO2	To understand the use of classes and interfaces							
CO3	To Use of packages, strings and dynamic input of values							
CO4	To Understand the concepts of modularity using methods and I/O package							
CO5	To use threads and exceptions							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Arrays	Write programs to use primitive data type. Write programs to use Arrays.		
2	Classes and Interfaces	Write programs to use classes. Write programs to use interfaces.		
3	Packages	Write programs for using and creating packages. Write programs to use String, String Buffer class and String Builder.		
4	Methods	Implements the concepts of functions, function overloading, function overriding. Describe I/O package & develop its applications.		
5	Threads and exceptions	Write programs based on Threads, Runnable Interface & use all its methods. Create program for Exceptions.		

Reference Books:

- 1. Naughton, Schildt, "The Complete Reference JAVA2", TMH
- 2.Balagurusamy E, "Programming in JAVA", TMH
- 3. "Head First Java" by Kathe Sierra
- 4. "A Beginner's Guide (Sixth Edition)" by Herbert Schildt

e-Learning Source:

www.java2s.com

www.udemy.com

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	-	-	-	-	-	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO	1																	
CO1	3	2	2	1		3	1						3				1	
CO2	2	2	2		3	1	1						2			2		
CO3	3	1	3	2	2	2							1				2	
CO4	2	2	2	2	1	1	3							2	2			
CO5	2	3	2	2	3	3	3											

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018-2019												
Course Code	CS323	CS323 Title of the Course Fundamentals of Software Engineering		L	T	P	C					
Year	III	Semester	V	3	1	0	4					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	develop s 2. Study of s 3. To unders software of	oftware. coftware design principle stand the phase of requi- development. stand the testing strategic	of software, its characteristics, and importance of following es and project scheduling rement analysis and make the students capable to prepare ques and follow good programming practices.			-						

	Course Outcomes							
CO1	Identify the best suitable SDLC model for a given set of user requirements.							
CO2	Design highly cohesive and low coupled software.							
CO3	Create a good quality SRS and the standard coding guidelines and practices.							
CO4	Prepare best possible test cases to uncover errors.							
CO5	Estimate the total effort, to assess and manage the potential risks involved while developing the software.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Software Engineering	Introduction to Software Engineering: Types of Software, Quality of Good Software. Phases of Software Development Life Cycle, Software Life Cycles Models: Waterfall Model, Prototype Model, Iterative Model, Spiral Model, Software Requirements Analysis and Specification: SRS, Characteristics of SRS.	8	1
2	Software Design Principles	Software Design Principles: Software Design, Design Process, Design Principles: Abstraction, Refinement, Modularity, Information Hiding. Project Scheduling & Staffing: Overall Scheduling, Detailed Scheduling, Team Structure.	8	2
3	Software Requirements Analysis and Specification	Software Requirements Analysis and Specification: Software Requirements: Need for SRS, Requirement Process, Problem Analysis, Time Estimation, Resource Allocation, Software Maintenance: Categories of Maintenance, Coding: Coding Standard and Guidelines.	8	3
4	Testing Fundamentals	Testing Fundamentals: Error Fault and Failure, Test Cases and Test Criteria, Testing: Black Box Testing and White Box Testing, Unit Testing, Integration Testing. Coding: Programming Principles and Guidelines: Common Coding Errors, Structured Programming, Programming Practices.	8	4
5	Risk Management	Risk Management: Reactive and Proactive Risk Strategies, Software Risks, Risk Analysis, Identification, Projection, Assessment, Monitoring and Managing the Risk. Effort Estimation Models, A Bottom-Up Estimation Approach, COCOMO Model.	8	5

Reference Books:

- 1. R. Pressman, "Software Engineering", TMH.
- 2. Pankaj Jalote, "An Integrated Approach to Software Engineering", Narosa.
- 3. Rajib Mall, "Fundamental of Software Engineering", PHI

e-Learning Source:

 $https://online courses.nptel.ac.in/noc 20_cs 68/preview$

https://nptel.ac.in/courses/106105087

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	1 02	103	104	103	100	107	1301	1302	1303	1304
CO1	1	3	2					1			3
CO2		2		1		2			2		
CO3	3		2				1	2			
CO4		1			2		2			1	
CO5		1		1							2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:													
Course Code	CS-324	Title of the Course	Computer Graphics & Multimedia	L	T	P	C						
Year	3	Semester	5	2	1	0	3						
Pre-Requisite	None	11.1											
Course Objectives	To learn various algor To learn the basic prir To learn and understar To learn various file for	nciples of 2- dimensional co and technical aspect of Multi	le drawing, scan conversion and filling of polygons mputer graphics. media Systems. text media used in multimedia systems.	•									

	Course Outcomes
CO1	Understand the basic concepts of computer graphics, graphics systems & their components, its applications and their relevance to classical
	and modern problems.
CO2	Discuss various algorithms for line drawing, circle drawing, scan conversion and filling of polygons.
CO3	Use of two-dimensional geometric transformations on graphics objects and their application in composite form (Translation, Scaling, Rotation,
	Reflection, Shearing, and Reflection problems based on these) and make aware of the illumination models and color systems.
CO4	Developed understanding of technical aspect of Multimedia System, its components, hardware and Multimedia I/O technologies.
CO5	Understand various file formats for audio, video and text media and elaborate on the fundamentals of animation.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Computer Graphics	Introduction to Computer Graphics: Introduction, Operations, Applications of Computer Graphics; Overview of Interactive Graphics, Pixels, Resolution, Aspect Ratio; Graphics standards, Graphical Input Output devices: CRT, LCD, Plasma Display System, Raster-Scan Display System, Random-Scan Display System, Printers, etc.	8	1
2	Scan Conversion	Scan Conversion: DDA and Bressenham's Line, midpoint circle drawing algorithm; DDA and Bressenham's Circle drawing algorithm, Polygon: Polygon Representation, Entering Polygons, Filling Polygons: Flood Fill Algorithm, Boundary-Fill Algorithm and Scan-line Polygon Filling Algorithm.	8	2
3	Geometrical Transformation	Geometrical Transformation: Basic Transformation: Translation, Scaling, Rotation, Homogeneous coordinate systems, Composite transformations. Illumination and Color Systems: Illumination, Shading, Shadow, Concept of colors, CIE color standards.	8	3
4	Introduction to multimedia	Introduction to multimedia, multimedia components, multimedia hardware, SCSI, IDE, MCI multimedia data and file format standards - Multimedia I/O technologies -Digital voice and audio -Video image and animation - Full motion video - Storage and retrieval technologies.	6	4
5	File formats	File formats: RTF, TIFF, MIDI, video compression, Image file formats: JPEG, PNG, BMP, GIF; Hypertext and Hypermedia, multimedia tools, CD-ROM, Computer Animation Design, Types of Animation, Creating Animation, Flash, Publishing Flash Movies	8	5

Reference Books:

Malay K. Pakhira, "Computer Graphics Multimedia and Application" PHI.

Chemmakesava R. Alavala, "Computer Graphics" PHI.

D.Hearn and Baker, "Computer Graphics" Prantice Hall of India.

e-Learning Source:

https://onlinecourses.nptel.ac.in/noc20_cs90/preview

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO4	PSO5
CO	101	102	103	104	103	100	107	1301	1302	1304	1303
CO1	1	3	2			2		2			3
CO2	1		2				2		3		
CO3	1	3	3				2	3		2	
CO4	1			3		3	2		1		
CO5	1	3		3		3	2	2			2

Name & Sign of Program Coordinator	Sign & Seal of HoD

B. Sc. (Physics, Mathematics, Computer Science)

 ${\bf III}^{rd}$ year / ${\bf VI}^{th}$ Semester

(Computer Science, Mathematics)

	Cours		Type of		Period Per week/ m	'se			Evalua Sche	ma	Sub.		Total	Credit Environment							
S. No.	e code	Course Title	Pape r	L	т	Р	C T	T A	Tota I		Tota I	Credit	Credit s	Employabilit Y	Entrepreneurshi p	Skill Developmen t	Gender Equalit y	Environment & Sustainabilit Y	n	Professional Ethics	SDG
THEOF	RIES																				
1		Introduction to Open Source Technology	Core	3	1	0	40	20	60	40	100	3:1: 0	4	٧	٧						9 INDUSTRY INNOVATION AND INTERASTRUCTURE
2	CS326	ERP(Elective)	Core													٧					8 DECENT WORK AND ECONOMIC GROWTH
	C5227			3	1	0	40	20	60	40	100	3:1: 0	4			٧					4 OUBLITY EDUCATION PROJECT: INDUSTRIEN AND REPORTED FOR
			Core													-1					8 DECENT WORK AND ECONOMIC GROWTH
		E-Commerce (Elective)	Core													٧					111
3	MT305	Statics & Dynamics	Core	3	1	0	40	20	60	40	100	3:1: 0	4	٧		٧					9 MOUSTRY, INNOVATION AND INTRASTRUCTURE
4	MT306	Analysis	Core	3	1	0	40	20	60	40	100	3:1: 0	4								9 MOUSTRY, INNOVATION AND INTERACTIONS
5		Basic Mathematical Modelling (Elective)	Core	2	1	0	40	20	60	40	100		4	٧		٧					12 RESPONSIBLE CONSUMPTION AND PRODUCTION
	MT308	Linear Programming (Elective)	Core	3	1	0	40	20	60	40	100	3:1: 0	4	٧	٧	٧					12 RESPONSIBLE CONSUMPTION AND PRODUCTION
6			Cor	0	0	8	0	0	0	200	200	0:0: 4	4	٧	٧	٧					4 EDUCATION
	CS330		Cor e	Ü	Ü	J		Ü	J	200	200		7								9 PROUSTRY INFORMATION
Total		- 0		15	5				300			24	24		FA 6 1: 1 .						

B. Sc. (Physics, Mathematics, Computer Science)

IIIrd year / VIth Semester

(Physics, Computer Science)

					Period r/wee	d ek/sem	Evaluation Scheme						Attributes							
S. No.	Course code	Course Title	Type of Paper	L	т	P	ст	TA	Total	ESE	Sub. Total	Credit	Total Credits	Employabi lity	Entrepr eneurs hip	Skill Developmen t	Gender Equality S	Enviro nment & Sustai nabilit y	uma Profe n ona alue Ethi	SDG I :s
THEOR	IES		1	1	1															
1	PY305	Applied Electronics	Core	3	1	0	40	20	60	40	100	3:1:0	4	V		٧				11 SUSTAINABLE ETTES AND COMMUNITIES
2	CS325	Introduction to Open Source Technology	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧				9 INCUSTRY INNOVATION AND DIFFASTRUCTURE
3	CS326	ERP(Elective)	Core													٧				8 DECENT MORK AND ECONOMIC GROWTH
	CS327	HCI(Elective)	Core	3	1	0	40	20	60	40	100	3:1:0	4			٧				4 DESIGNATION PROGRAMMAN 9 RESIGNATION PROGRAMMAN C. CACCAM MAINS AND
	CS328	E-Commerce(Elective)	Core													∨				8 ESCENT WORK AND SOMETH
5		Mathematical Methods in Physics (Elective)		3	1	0	40	20	60	40	100		4	٧		٧				4 FUNCTION
		Advanced Solid State Physics(Elective)	Core									3:1:0		٧		٧				12 RESPONSIBLE CONSTRUCTION AND PRODUCTION
6	PY309	UG Physics Project	Core									0.0.4		٧		٧		٧	٧	11 SUSTAINABLE CITIES AND COMMANDERED
				0	0	8	0	0	0	200	200	0:0:4	4	٧	٧	٧				4 CHALLY SUIGNING STATES OF AND OWNESS FOR CHARLES
	CS330	UG CS Project	Core																	9 AND WITH STREET
7	CS329	Web Technologies and Applications	Core	3	1	0	40	20	60	40	100		4	٧	٧	٧				9 PALASTRY INVOLUTION AND INFORMATION
	PY306	Physics of Materials	Core									3:1:0		٧		٧				9 INDUSTRY INFORMATION
		Tota	İ	15	5	8	200	100	300	400	700	24	24							

B. Sc. (Physics, Mathematics, Computer Science)

IIIrd year / VIth Semester

(Physics, Mathematics)

				Per	Perio hr/we	od ek/sem	Evaluation Scheme					Attributes									
S. No.	Course code	Course Title	Type of Paper	L	т	P	СТ	TA	Total	ESE	Sub. Total	Credit	Total Credi ts		Entrepre neurship	Skill Development	Gender Equality	Environme nt & Sustainabili ty	Huma n Value	Profession al Ethics	SDG
THE	ORIES		1			ı	1					ı		1 -			ı				
1	DV205	A multiple Floring	C	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧					11 SUSTAINABLE CITIES ABBETTIES
2	PY305	Applied Electronics	Core											٧		٧					4 QUALITY EDUCATION
2		Mathematical Methods in Physics (Elective)	Core							••		2.1.0		"		v					4 EDUCATION
		Advanced Solid State Physics(Elective)	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧					12 RESPONSIBLE CONSUMPTION AND PRODUCTION
3	MT305	Statics & Dynamics	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧					9 MARSTRY PARTYATION AND INFRASTRUCTURE
4	MT306	Analysis	Core	3	1	0	40	20	60	40	100	3:1:0	4	٧		٧					9 PRESTRY PREVIOUSE
5		Basic Mathematical Modelling (Elective)	Core	•	4		40	20		40	100	3:1:0		٧		٧					12 RESPONSIBLE CONSUMPTION AND PRODUCTION
		Linear Programming (Elective)	Core	3	1	0	40	20	60	40	100	3.1.0	4	٧	٧	٧					12 RESPONSIBLE CONSUMPTION AND PRODUCTION
6	PY309	UG Physics Project	Core	0	0	8	0	0	0	200	200	0:0:4	4	٧		٧		~		٧	11 SUSTAINABLECTIFES ABOUT AND COMMUNITIES
			Total	15	5	8	200	100	300	400	700	24	24								

Effective from Session: 2018	3-19						
Course Code	MT305	Title of the Course	Statics & Dynamics	L	T	P	C
Year	Third	Semester	Sixth	3	1	0	4
Pre-Requisite	10+2 with Mathematics	Co-requisite					
Course Objectives	surfaces. Students will be able	e to learn about equilibrium and	c and key knowledge of motion of bodies acted upon by forces under d aplore subject into their respective d	lifferer	nt condi		

	Course Outcomes
CO1	Students will be able to understand Velocity and acceleration along radial and transverse directions and along Tangential and normal directions. They will also study Simple harmonic motion in various situations and about Motion under other laws of forces, Earth attraction, Elastic strings.
CO2	Students will gain an understanding of Motion of bodies in resisting medium, Constrained motion (circular and cycloidal only).
CO3	Students will gain an understanding of motion of particle on smooth and rough plane curves, Rocket motion and also study about Central orbits and Kepler's law, Motion of a particle in three dimensions.
CO4	Students will create the own understanding of Common catenary, Centre of gravity and get knowledge of Stable and unstable equilibrium, Virtual work.
CO5	Students will learn about Forces in three dimensions, Poinsot's central axis, Wrenches, Null line and null plane.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Velocity and acceleration along radial and transverse directions, and along Tangential and normal directions, Simple harmonic motion, Motion under other laws of forces, Earth attraction, Elastic strings	8	1
2		Motion in resisting medium, Constrained motion (circular and cycloidal only).	8	2
3		Motion on smooth and rough plane curves, Rocket motion, Central orbits and Kepler's law, Motion of a particle in three dimensions.	8	3
4		Common catenary, Centre of gravity, Stable and unstable equilibrium, Virtual work.	8	4
5		Forces in three dimensions, Poinsot's central axis, Wrenches, Null line and null plane.	8	5

Reference Books:

- 1 R.S. Verma A Text Book on Statics., Pothishala Pvt. Ltd., Allahabad
- 2. S.L. Loney An Elementary Treatise on the Dynamics of a Particle and of Rigid Bodies, Kalyani Publishers, New Delhi.
- 3. J.L. Synge & B.A. Griffith Principles of Mechanics, Tata McGraw-Hill, 1959.
- 4. M.A. Pathan: Statics
- 5. Jhonson and Beer: Vector Mechanics for Engineers
- 6. Zafar Ahsan: Lectures Notes on Mechanics

e-Learning Source:

- 1. https://nptel.ac.in/courses/112/106/112106180/
- 2. https://www.mathcity.org/bsc/notes of mechanics/tariq mahmood qadri
- 3. https://www.fisica.net/mecanicaclassica/introduction to statics and dynamics by rudra pratap.pdf
- 4. https://www.msuniv.ac.in/Download/Pdf/2c2167ab44cf4fc

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PSO1 PSO2 PSO3 PSO4 PSO5											
CO1	3	2	2	1	1	1	2	2	2	1	2	2
CO2	3	2	2	1	1	1	2	3	3	2	2	1
CO3	3	2	2	1	1	1	2	2	2	2	3	3
CO4	3	2	2	1	1	1	2	2	2	3	3	2
CO5	3	2	2	1	1	1	2	2	2	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

				Inte	grai (Jnivers	sity, Lu	cknow							
	ve from Ses														
Course	e Code		T306 Title of the Course Analysis										T	P	C
Year		Third			Semest			Sixth				3	1	0	4
Pre-Re	equisite	B.Sc	Second y	ear	Co-req	uisite								<u> </u>	
Course	e Objectives	analy 2. Th	tic conceptis course	ts of limit, c	onvergen rovide an	ce, integrati introduction	ion and diffeon to the	ories for functi						-	
						Cou	rse Outcom	ies							
CO1	Describe	undame	ntal prope	ties of the re	al numbe	rs that lead	to the forma	l developmen	t of real ar	nalysis.					
CO2	Demonstr	ate an un	derstandir	ng of limits a	nd how th	ney are used	l in sequence	es, series, diffe	rentiation	and integra	ation;				
CO3	uniform c	Understand and be able to use notions of convergence involving sequences of functions, including the difference between point wise and uniform convergence. Apply the Weierstrass M-test and the uniform convergence theorem for integrals to examples.													
CO4	Demonstr	ate under	rstanding o	of the basic c	oncepts u	ınderlying o	complex ana	lysis.							
CO5	Find Laur	ent series	s about isc	lated singula	rities, and	d determine	residues an	d use the resid	ue theorer	n to compu	te several	kinds	of real	integra	als.
Unit No.	Title of the	he		Content of Unit Contact Mapped Hrs. CO											
1				series about ral kinds of			, and determ	ine residues a	nd use the	residue the	eorem to		8		1
2		Sec	quence of 1	eal numbers	Subsequ	ence, Boun		notonic sequer neral principle			iences,		8	2	2
3		Uni Dir	iform convichlet's te	ergence of s	equences ness and i	and series ntermediate	of functions. e value prop	Weierstrass - erties of contir	M test, A	bel's and	rm		8	3	3
4				Complex var rmonic funct				ferentiability, (nction.	CR – equa	tions , Ana	lytic		8	2	4
5		Cau	uchy funda	mental theor	em, Cau	chy integral	formula, Do	erivatives of au arities, Residue					8	:	5
Referen	nce Books:			<u> </u>		•		,							
1. Robe	ert G. Bartle	and Don	ald R. She	rbert : Introd	uction to	Real Analy	sis,Wiley St	udent Edition.							
2. S.	C . Malik ar	d S. Aro	ra : Mathe	matical anal	vsis. Wile	ev Eastern I	td.								
3. R .	V. Churchil	l and J.W	V. Brown:	Complex Va	riable &	Application		Hill, Internation	onal Book	Company,	London				
	and Gupta : I		of a Comp	olex Variable	, Pragati	Prakashan.									
	arning Sour		1 20	02/											
•	s://swayam.g			•											
	s://www.youtube.com/watch?v=gJ1pYz1k0qM														
3. https	ttps://www.youtube.com/watch?v=t9xW7UaZwZ0 Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PΩ	-PSO														
	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PS	O4	PSO	O5
	CO1	3	1	1	1	2	1	1	1	1	2	2	2	2	
C	CO2	3	1										2	3	;
C	'03	3	1	2	1	3	1	1	1	2	1		,	3	,

CO3	3	1	2	1	3	1	1	1	2	1	2	3
CO4	3	1	1	1	2	1	1	2	2	2	3	3
CO5	3	1	1	1	2	1	1	2	2	3	3	2
		1- 1	Low Correla	tion; 2- 1	Moderate (Correlation; 3	3- Substanti	al Correla	tion			

Sign & Seal of HoD

Name & Sign of Program Coordinator

Effectiv	ve from Session: 20	18-19									
Course	Code	MT307	Title of the Course	BASIC MATHEMATICAL MODELING	L	T	P	С			
Year		Third	Semester	Sixth	3	1	0	4			
Pre-Re	quisite	10+2 with Mathematics									
Course	Objectives		e course is aimed to develop the skills in mathematics specially in calculus which is necessary for grooming them into cessful science graduate. The topics introduced will serve as basic tools for specialized studies in science field.								
			Course Outcome	es							
CO1	Assess and articul	ate what type of modeling t	echniques are appropriate for	a given physical system.							
CO2	Construct a Mathe	ematical model of a given p	hysical system and analyze it.								
CO3	Make predictions	of the behavior of a given p	physical system based on the a	nalysis of its Mathematical Model.							
CO4	Demonstrate unde dynamical system		nematical tools such as calculu	s of several variables, differential equations	and el	lementa	ary				
CO5	Recognize the pov	ecognize the power of mathematical modeling and analysis and be able to apply their understanding to their further studies.									
Unit No.	Title of the Unit		Content of Unit Contact Hrs. CO								
		1113.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Simple situations requiring mathematical modeling, techniques of mathematical modeling, classifications of mathematical modeling, characteristics of mathematical models. Mathematical modeling through geometry, algebra, trigonometry and calculus. Limitations of methodical modeling.	8	1
2		Mathematical modeling through ordinary differential equations first order linear growth and decay models, compartment models, mathematical modeling in dynamics through first order ODE. Mathematics modeling through Systems of ODE of first order	8	2
3		Mathematical modeling in population dynamics, mathematical modeling of epidemic, Compartment model through system of ODE. Mathematical Modeling of circular motion, Planetary motions and motions of satellite.	8	3
4		Mathematics modeling in economics, in medicine, Arms race, Battles, international trade in terms of system of ODE and dynamic through ordinary differential equations. Mathematical Modeling through ODE of second order.	8	4
5		Mathematical modeling through difference equations: The need, basic theory, modeling in Economics and finance, modeling in population dynamics and Genetics, Modeling in probability theory. Examples of Mathematical modeling through difference equations	8	5

Reference Books:

- 1. Robert G. Bartle and Donald R. Sherbert: Introduction to Real Analysis, Wiley Student Edition.
- 2. S. C. Malik and S. Arora: Mathematical analysis, Wiley Eastern Ltd.
- 3. R. V. Churchill and J.W. Brown: Complex Variable & Applications, McGrow Hill, International Book Company, London Goyal and Gupta: Function of a Complex Variable, Pragati Prakashan.

e-Learning Source:

- 1. https://www.youtube.com/watch?v=-uCwgZUz51o
- 2. https://nptel.ac.in/courses/111107113/
- 3. https://study.com/academy/lesson/types-of-mathematical-models.html
- 4. https://www.frontiersin.org/articles/10.3389/fgene.2015.00354/fullpdf 5. https://www.youtube.com/watch?v=iV4Hlh8gHLs

5. https://www.y	5. https://www.youtube.com/watch:v=jv4rintogriLs											
	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	1	1	3	1	1	1	2	2	1
CO2	2	2	2	1	1	2	2	2	1	1	2	3
CO3	3	2	3	1	1	2	1	2	2	1	2	3
CO4	3	2	3	1	1	3	2	2	2	1	2	3
CO5	3	2	1	1	1	2	1	2	2	3	3	3

 1- Low Correlation; 2- Moderate Correlati	on; 3- Substantial Correlation
Name & Sign of Program Coordinator	Sign & Seal of HoD
Tume to Sign of Frogram Coordinator	Sign a Sear of 1102

Effective from Session	: 2018-19									
Course Code	MT308	Title of the Course	Linear Programming	L	T	P	C			
Year	Third	Semester	Sixth	3	1	0	4			
Pre-Requisite	10+2 with Mathematics	Co-requisite								
Course Objectives	To teach the basic concepts of Linear Programming, Integer Linear Programming, Multi-objective and Stochastic linear									

	Course Outcomes
CO1	Formulation of real life problems in the form of linear programming problem and various method to solve the formulated LPP.
CO2	Can obtain the problem when changing the parameters of the problem in later stages.
CO3	Understanding pure and mixed integer programming problems with different methods of solving those problems.
CO4	Understand Multi-objective and Stochastic programming problem and various methods to make them deterministic in order to solve efficiently.
CO5	Learn decision making problems under various environment explicitly the theory of games.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1		Formulation of linear programming problem, simplex algorithm, Primal Dual relationship, Economical interpretation of the dual, Dual Simplex method. Revised simplex method. Bounded variable simplex method	8	1
2		Sensitivity Analysis: Change in values of objective function coefficient, Change in right hand side values, Change in coefficient of coefficient, Adding a new product and adding a constraint.	8	2
3		Integer programming formulation, all integers and mixed integer programming problems, Gomory's cutting plane algorithm, Branch and bound algorithm. Knapsack problem.	8	3
4		tochastic programming models, Chance constraints optimization, two stage problems. Goal Programming methods and applications.	8	4
5		Decision Theory: Introduction, Elements of decision problem, Types of decision making environment, Decision tree. Game Theory: Basic definitions, Two-person Zero-sum games, Pure and mixed strategy, Principle of Dominance, Graphical method, Solution of games by linear programming method.	8	5

Reference Books:

- 1. Mokhtar S. Bazara, John J. Jarvis "Linear Programming and Network Flows" Fourth Edition. WILEY A John Wiley & Sons, Inc., Publication.
- 2. H.A. TAHA "Operations Research- An Introduction" Pearson.
- 3. K.Swarup, P.K.Gupta and A. Manmohan, "Operations Research", S. Chand.
- 4. Hiller And Liebarman, "Introduction to Operations Research", McGraw Hill Company.
- 5. David K. J. Mtetwa, "Linear Programming" Paradise publishers, US.

e-Learning Source:

- 1. https://www.youtube.com/watch?v=TwAvQJAM9Hk
- 2. https://www.youtube.com/watch?v=M8POtpPtQZc
- 3. https://www.youtube.com/watch?v=KLHWtBpPbEc
- 4. https://www.youtube.com/watch?v=o-N0jFUpdWo
- 5. https://www.youtube.com/watch?v=56-iiZEjqnU
- 6. https://www.youtube.com/watch?v=LAC212ZwBB4
- 7. https://www.youtube.com/watch?v=gkm6WljmbOk
- 8. https://www.youtube.com/watch?v=EyVYAngxkPA

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	2	2	1	3	1	1	1	2	2
CO2	3	1	1	1	2	1	3	2	2	3	2	3
CO3	3	1	1	2	2	1	3	2	2	2	2	3
CO4	3	2	3	1	1	1	3	2	1	1	2	3
CO5	3	2	1	2	2	1	3	2	3	3	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21								
Course Code	PY305	Title of the Course	Applied Electronics	L	T	P	C	
Year	Third	Semester	Sixth	3	1	0	4	
Pre-Requisite	10+2 with Physics	Co-requisite						
Course Objectives	principles of modern pl	hysics and mathematics to	mpart basic and key knowledge of electronics and its o obtain quantitative relations which are very important the able to explore subject into their respective dimension.	t for hi				

	Course Outcomes
CO1	Students will gain an understanding of modern physics and characterization of semiconductor based electronic devices.
CO2	Students will be able to realize the important concepts of advance electronics related to bipolar junction transistors.
CO3	Students will gain an understanding of advanced concepts of transistors and related to biasing circuits for small- and large-scale signal conditioning, power amplifications and effect of external factors in transistor operations.
CO4	Students will learn about the high switching semiconducting devices like FETs and MOSFETs for designing power supplies for industrial and commercial applications.
CO5	Students will learn about the Power electronic devices like the UJT, TRIAC, etc. and designing Integrated Circuits for fabrication of high yield monolithic ICs.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Semiconductor and p- n junction diode	Diffusion of minority carriers in semiconductor, work function in metals and semiconductors Junctions between metal and semiconductors, Semiconductor and p.n. Junction, Depletion layer, Junction Potential Width of depletion layer, Field and Capacitance of depletion layer, Forward A.C. and D.C. resistance of junction, Reverse Breakdown, Zener and Avalanche diodes, Tunnel diodes, Point contact diode, their importance at High frequencies, LED photodiodes, Effect of temperature on Junction diode Thermistors.	08	CO1
2	Transistor-I	Transistor parameters, base width modulation, transit time and life-time of minority carriers, Base- Emitter resistance Collector conductance, Base spreading resistance, Diffusion capacitance, Reverse feedback ratio, Equivalent circuit for transistors, Basic model, hybrid model and Y parameter equivalent circuit, Input and output impedances.	08	CO2
3	Transistor-II	Current and Voltage gain, Biasing formulae for transistors, Base bias, emitter bias and mixed type bias and mixed type biasing for small and large signal operation, Transistor circuit application at law frequencies, their AC and DC equivalent for three different modes of operation, Large signal operation of transistors, Transistor Power amplifiers, Class A and B operation, Maximum power output Effect of temperature, heat sinks, thermal resistance Distortion in amplifiers, cascading of stages, Frequency response, Negative and positive feedback in transistor amplifiers.	08	CO3
4	Field effect transistors and Power Supplies	Field effect transistors and their characteristics, biasing of FET, use in preamplifiers, MOSFET and their simple uses. Electronically regulated low and high voltage power supplies, Inverters for battery operated equipments. Phototransistors, Silicon Controlled rectifiers.	08	CO4
5	Power Electronics and Integrated Circuits	Triac Construction, Operation and Characteristics, Unijunction Transistors (UJT), its characteristics, IC-classification, Making monolithic ICs, IC-fabrication of components on monolithic IC, IC packings, IC symbols.	08	CO5

Reference Books:

- 1. B. G. Streetman; "Solid State Electronic Devices", UK Edition (Prentice-Hall of India. New Delhi, 1986).
- 2. W. D. Stanley; "Electronic Devices, Circuits and Applications" (Prentice-Hall, New Jersey, USA. 1988).
- 3. J. D. Ryder; "Electronics Fundamentals and Applications" IInd Edition (Prentice-Hall of India. New Delhi, 1986).
- 4. I. Millman and A. Grabel; "Microelectronics", International. Edition (McGraw-Hill Book Company, New York, 1988).

e-Learning Source:

- $1. \quad \underline{https://nptel.ac.in/courses/117/107/117107095}/$
- $2. \quad \underline{\text{https://nptel.ac.in/courses/108/101/108101091/}}$
- $3. \quad \underline{https://nptel.ac.in/courses/117/103/117103063}/$

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	2	1	2	1	2	3	2	1	2	2
CO2	1	3	2		3	1	2	1	2	3	3
CO3	3	2	1	1	2	2	3	3	3	2	2
CO4	2	2	3		1	1	2	1	2	2	3
CO5	1	3	1	2	3	2	1	2	1	2	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation								
Name & Sign of Program Coordinator	Sign & Seal of HoD							

Effective from Session: 2020-21										
Course Code	PY306	Title of the Course	Physics of Materials	L	T	P	C			
Year	Third	Semester	Fifth	3	1	0	4			
Pre-Requisite	10+2 with Physics	Co-requisite								
Course Objectives		The purpose of this undergraduate course is to impart basic and key knowledge of materials. By using the basic knowledge of materials of obtain quantitative relations which are very important for further research. After successfully completion of course, the student will be								
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	able to explore subject	into their respective dimer	nsions							

	Course Outcomes							
CO1	To learn about crystal structure and its fractures							
CO2	To introduce crystal imperfection and elastic properties of crystals.							
CO3	To introduce the structure of metals, alloys, ceramics and glasses and their processing.							
CO4	To Introduce the Nanomaterials and nanotechnology							
CO5	To learn various characterization techniques of nanoparticles or nanomaterials							

Experiment No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO	
1	Introduction	Introduction: Atomic basis of structure – ionic bonding, Covalent bonding, Metallic bonding, Secondary bonding, Crystalline and non-crystalline states, crystal symmetry, silica and silicates, polymers, fullerenes. Fracture: Ductile fracture, Brittle fracture, Fracture toughness, Ductile-brittle transition, Protection against fracture, Fatigue fracture.	08	CO1	
2	Crystal Imperfections and Elastic Properties				
3	Structure and Processing of Materials	Structure of metals and alloys, structure of ceramics and glasses, structure of polymers, structure of composites (qualitative). Brief introduction of processing of metals, alloys, ceramic and glasses.	08	CO3	
4	Introduction to Nanomaterials	Brief introduction of nanomaterials, properties of Nanomaterials. Methods to produce nanomaterials: Sol-Gel synthesis method. Applications of nanomaterials. Carbon Nanomaterials: classification and properties, Nanowires: classification, properties and applications. Nanocomputers.	08	CO4	
5	Tools and Techniques	Crystallography: Particle size determination, Electron Microscopy: Scanning Electron Microscopy (SEM), Tunneling Electron Microscopy (TEM) (qualitative), sample preparation for an electron microscope, Difference between TEM and SEM, Disadvantages of electron microscope, atomic force microscope (AFM) (qualitative).	08	CO5	

Reference Books:

- 1. Introduction to Solid State Physics: C. Kittel (Wiley, VII ed.)
- 2. Introduction to Solids: L.V. Azaroff (Tata McGraw Hill).
- 3. Solid State Physics: A.J. Dekker (Prentice-Hall).
- 4. Essentials of Materials Science: A.G. Guy (McGraw Hill).

e-Learning Source:

- 1. https://nptel.ac.in/courses/115/104/115104109/
- 2. https://nptel.ac.in/courses/115/105/115105099/
- 3. https://nptel.ac.in/courses/113/107/113107075/
- 4. <u>https://nptel.ac.in/courses/115/101/115101007/</u>

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	2	1	2	1	2	3	2	1	2	2
CO2	1	3	2		3	1	2	1	2	3	3
CO3	3	2	1	1	2	2	3	3	3	2	2
CO4	2	2	3		1	1	2	1	2	2	3
CO5	1	3	1	2	3	2	1	2	1	2	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation								
Name & Sign of Program Coordinator	Sign & Seal of HoD							

Effective from Session: 2020)-21						
Course Code	PY307	Title of the Course	Mathematical Methods in Physics (Elective 1)	L	T	P	C
Year	Third	Semester	Sixth	3	1	0	4
Pre-Requisite	10+2 with Physics	Co-requisite					
Course Objectives	The main objective of thi advanced problems in theo		students with a range of mathematical methods that a	are ess	ential fo	r solving	3

	Course Outcomes
CO1	Students will be able to apply the methods of vector analysis. These methods provide a natural aid to the understanding of geometry and some physical concepts.
001	They are also a fundamental tool in many theories of Applied Physics.
CO2	Students will be able to use computational techniques and algebraic skills essential for the study of systems of linear equations, matrix algebra, vector spaces,
COZ	eigenvalues and eigenvectors, orthogonality, and diagonalization. (Computational and Algebraic Skills).
CO3	Students will understand the convergence and divergence of infinite series and to evaluate successive differentiation and determine the area and volume by
CO3	applying the techniques of double and triple integrals.
CO4	Students will express the concept of probability and its features, explain the concept of a random variable and the probability distributions.
CO5	Students will use the gamma function, beta function and special functions to: evaluate different types of integral calculus problems and Fourier series to solve
COS	differential equations.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Vector Calculus and Curvilinear Coordinates	Vector Calculus and Curvilinear Coordinates Differential vector operators: Gradient, divergence and curl. Gauss's theorem, Green's theorem, Stoke's theorem, Some simple examples based on these theorems, orthogonal curvilinear coordinates, cylindrical and spherical polar coordinates, divergence, gradient, curl and Laplacian in these coordinates.	08	CO1
2	Vector Spaces and Linear Algebra Determinants for linear algebraic equations, Laplace development, Cramer's rule, antisymmetry, Gauss elimination. Matrices—basic definition, classification and operations, orthogonal matrices, Hermitian matrices, unitary matrices, Rank of matrices, eigenvalues and eigenvectors.			CO2
3	Infinite Series and Multiple Integrals	Infinite Series: Fundamental concepts, convergence tests, alternating series, algebra of series, power series, Taylor series. Multiple Integrals: Double and triple integrals, application of multiple integrals, change of variables in integrals, general properties of Jacobians, surface and volume integrals.	08	CO3
4	Statistics and Probability	Statistics and Probability: Statistical distributions, second moments and standard deviations, definition of probability, fundamental laws of probability, discrete probability distributions, combinations and permutations, continuous distributions: expectation, moments and standard deviation, Binomial, Poisson and Gaussian distributions.	08	CO4
5	Special Functions	Beta and gamma functions: problems, relation between beta and gamma functions, Bessel's differential equations, Legendre's differential equations, Hermite's differential equations, Laguerre's differential equations (Qualitative), series solutions, Dirac delta functions and its properties.	08	CO5

Reference Books:

- 1. Mathematical Methods for Physicists: G. Arfken and H. J. Weber (Academic Press, San Diego) 7th edition, 2012.
- 2. Mathematical Methods in the Physical Sciences, M.L. Boas (Wiley) 2002.
- 3. Applied Mathematics for Engineers and Physicists, L. A. Pipes & L. R. Harvill (McGraw-Hill), 1971.
- 4. Mathematical Methods for Physics and Engineering, K. F. Riley, M.P. Hobson and S.J. Bence (Cambridge University Press), 1998.

e-Learning Source:

- $1. \ \underline{https://www.freebookcentre.net/Physics/Mathematical-Physics-Books.html}\\$
- 2. https://nptel.ac.in/courses/115106086/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO	101	102	103	104	103	100	107	1301	1502	1303	1504
CO1	2	1	1		2	1	2	3	2	1	1
CO2	3	1	2	1	3		3	2	3	3	1
CO3	2	3	2		3	2	2	3	1	2	2
CO4	3		1	1	2		1	2	2	3	1
CO5	1	2	1	2	2	1		3	2	2	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21							
Course Code	PY308	Title of the Course	Advanced Solid-State Physics (Elective 2)	L	T	P	C
Year	Third	Semester	Sixth	3	1	0	4
Pre-Requisite	10+2 with Physics	Co-requisite					
Course Objectives	provide a broader and de		the basic courses in Solid State Physics, Electronic Materi physics of today's semiconductor devices. This includes d tental devices.				

	Course Outcomes
CO1	Students will gain an understanding of the vibrations involved in Lattice which help them to understand the concept of phonon and vibrational dynamics.
CO2	Students will gain knowledge of semiconductor and their benefits over conductors and trying to improve upon these qualities.
CO3	Students will gain an understanding of dielectric material, their properties and use of dielectric material in capacitor. It will help in understanding about Capacitors, as it is one of the most basic electrical components in any electronic circuit.
CO4	Students will gain an understanding of different kinds of magnetic material and it uses.
CO5	Students will be able to evaluate the optical properties of the material and will create own understanding approaches to the finding them.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Elementary Lattice Dynamics	Elementary Lattice Dynamics: Lattice vibrations and phonons. Linear monoatomic and diatomic chains, Acoustical and optical phonons, Qualitative description of the phonon spectrum in solids, Dulong and Petit's law, Einstein and Debye theories of specific heat of solids, T ³ law.	80	CO1
2	Semiconductor Physics Classifying materials as semiconductors, Chemical bonds in semiconductors, Mechanism of current flow, Forbidden, valence and conduction bands, Intrinsic and extrinsic semiconductors, Carrier concentration and Fermi level for intrinsic semiconductor, Carrier concentration, Fermi level and conductivity of extrinsic semiconductor.		08	CO2
3	Dielectric Properties of Materials	Polarization, Depolarization field, Electric susceptibility, Polarizability, Sources of polarizability (electronic, ionic, dipolar and orientational), Classical theory of electric polarizability, Frequency dependence of ionic polarizability, Local electric field at an atom, Clausius-Mosotti equation, Langevin-Debye equation, Complex dielectric constant and loss.		CO3
4	Magnetic Properties of Materials	Magnetic properties of matter: dia, para, ferri and ferromagnetic materials, Classical Langevin theory of dia and paramagnetic materials, Quantum mechanical treatment of paramagnetism, Curie law, Weiss's theory of ferromagnetic domains, Discussion of B-H Curve, hysteresis and energy loss.	08	CO4
5	Optical Properties of Materials	Classical Model-Drude model, ionic conduction, Optical refractive index and relative dielectric constant, Optical absorption in metals, semiconductors and insulators, Colour centres, Excitons, Luminescence, LED, Photo detector, Photomultiplier.	08	CO5

Reference Books:

- $1. \ \ Introduction to \ Solid \ State \ Physics \ by \ Charles \ Kittel \ (Willey \ Publication).$
- 2. Elements of Solid-State Physics by Puri and Babbar (S. Chand).
- 3. Solid State Physics by S. O. Pillai (New Age International).

e-Learning Source:

- 1. <u>https://nptel.ac.in/courses/115/104/115104109/</u>
- 2. https://nptel.ac.in/courses/115/105/115105099/
- 3. https://nptel.ac.in/courses/113/107/113107075/
- 4. <u>https://nptel.ac.in/courses/115/101/115101007/</u>

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3		1		1	2		3	3	2	1
CO2	3		2		3	2	2	3	3	2	1
CO3	3		2		3	2	2	3	3	2	1
CO4	3		1		2	2	2	3	3	2	1
CO5	3		2		3	2	2	3	3	2	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation						
Name & Sign of Program Coordinator	Sign & Seal of HoD					

Effective from Session: 2018-19							
Course Code	CS325	Title of the Course	Introduction to Open Source Technology	L	T	P	C
Year	Third	Semester	Sixth	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	To make student able	to understand the basic	are environment and introduce them to use open source pack directory, file structure of Linux, basic database structure at ples and terms of web application development using Linux,	nd desi			1

	Course Outcomes
CO1	To expose students to free open source software environment and introduce them to use of open source packages for web application
	development using Linux, Apache, MySQL and PHP (LAMP).
CO2	To understand the basic directory, file structure of Linux, basic database structure and design concepts.
CO3	Install and configure database server (MySQL) for use with PHP and Apache to provide interactive dynamical content for the web.
CO4	Implement server side programming language (PHP), with dynamic content
CO5	Install and configure a Web platform (LAMP) used in web-site development.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Open Source	Open-Source Definition, The distribution terms of open source software, open source Vs. Closed Source Software, Shareware, Freeware Free and Open Source Software (FOSS), LAMP (Linux, Apache, MySQL, PHP).	8	CO1
2	Linux	Introduction of Linux, Linux Vs. Windows, benefits of Linux, Architecture of Linux, Linux Kernel, Basic Linux commands, Administrative Commands.	8	CO2
3	Apache	Introduction to Web server. Types of Web Servers: Apache, Tomcat, XAMP. Installing and Testing of Apache on Linux. Introduction to Open Source Programming Languages: PhP, Python, Perl.	8	CO3
4	РНР	Testing and Installation of PHP on Linux. Basics of PHP scripts, Variables, Data types, Operators and Expressions, Constants, Flow control functions, If statement, Loops, Arrays, Strings, Dates and Times, Forms.	8	CO4
5	MySQL Server and Application	MySQL: Configuring MySQL Server, working with MySQL Databases, MySQL Tables, SQL Commands – INSERT, SELECT, UPDATE, REPLACE, DELETE. Date and Time functions in MySQL. Connecting to MySQL with PHP. Developing PHP scripts for dynamic web page like Feedback form, registration form.	8	CO5

Reference Books:

- 1. James Lee, Brent Ware." Open Source Web Development with LAMP: Using Linux, Apache, MySQL, Perl, and PHP", Addison Wesley
- 2. Jason Gerner, Morgan Owens, Elizabeth Naramore, Matt Warden, "Professional LAMP: Linux, Apache, MySQL and PHP5 Web Development", Wrox Publication.
- 3. Christopher Negus "Red Hat Linux Bible" Wiley Publishing ISBN: 0-7645-4333-4
- 4. Julie C Meloni, "PHP, MySQL and Apache" Pearson Education ISBN: 81-297-0443-9
- 5. The Complete Reference Linux Peterson Tata McGraw HILL ISBN: 0-07-044489-7

e-Learning Source:

https://onlinecourses.swayam2.ac.in/aic20 sp32/preview

						Cour	se Arti	culatio	n Matr	ix: (Map	ping of	COs with	POs and	d PSOs)				
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1		3	2		1	2							2	3	1	2	2	
CO2	2	1			2		2							3	2	1	3	
CO3	2	1		3		1							3	3	2	1	1	
CO4	3	3	1	1	2	1							3	2	3	2		
CO5	3	2			1		2						3	2	3		1	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from S	Effective from Session: 2018-19													
Course Code	CS326	Title of the Course	Enterprise Resource Planning (ERP)	L	T	P	C							
Year	Third	Semester	Sixth	3	1	0	4							
Pre-Requisite	None	fone Co-requisite None												
Course Objectives	2. To focus on a strong et 3. To train the students to multidimensional growth	nphasis upon practice o develop the basic unde	ng on the theory and practice of Enterprise Resource Plannin f theory in Applications and Practical oriented approach. rstanding of how ERP enriches the business organizations in competitive and make them ready to self-upgrade with the h	achie	ving a									

	Course Outcomes											
CO1	Basic understanding of Enterprise Resource Planning Technology.											
CO2	Make basic use of Enterprise software, and its role in integrating business functions											
CO3	Analyze the strategic options for ERP identification and adoption.											
CO4	Design the ERP implementation strategies.											
CO5	Create reengineered business processes for successful ERP implementation.											

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	An Overview to ERP	Definition ERP, Common Myths related to ERP, Origin and Need for an ERP System, Risks and Benefits of an ERP. ERP and Related Technologies: Business Process Reengineering (BPR), Data Warehousing, Data Mining, Online Analytical Processing (OLAP), Product Life Cycle Management (PLM), Supply Chain Management (SCM), Customer Relationship Management (CRM) and Geographical Information System (GIS).	10	CO1
2	Market place and its growth	Market Overview, Reasons for the Growth of ERP Market, Reasons for the Failure of ERP, Functional Modules of ERP. ERP Implementation Basics: Technological, Operational, and Impact of ERP Implementation on Current Market, Implementation Challenges and possible solutions.	8	CO2
3	Related Technologies and Implementation Process of ERP	Business Process Re-engineering, Management Information systems, Decision Support Systems, Executive Information Systems. ERP Implementation Process: Implementation Life Cycle, Package Selection Implementation Methodologies, Implementation Plan, Risk Assessment, ERP Project Teams, Implementation Vendors Evaluation Criterion.	10	CO3
4	Success and Failure Factors of an ERP Implementation	Success Factors, Failure Factors. ERP Operation and Maintenance: After Going Live, Ongoing Implementation Efforts, Upgrading Vs. New Software, Operation and Maintenance of the ERP System, ERP Maintenance Phase, Maximizing the ERP System.	8	CO4
5	ERP and E-Business	Supply Chain Integration, The E-Business Process Model, Components of E-Business Supply Chain. Emerging Trends in ERP: Future of ERP, Faster Implementation Methodologies, Customization Tools, Business Models, Challenges of E-Commerce.	8	CO5

Reference Books:

- 1. Lexis Leon, "Enterprise Resource Planning", TMH.
- 2. Brady, Manu, Wegner, "Enterprise Resource Planning", TMH.
- 3. V.K Garg, N.K. Venkitakrishnan, "ERP Ware: ERP Implementation Framework", Prentice Hall of India.
- 4. ERP Ravi Shankar and S. Jaiswal (Galgotia)

e-Learning Source:

https://nptel.ac.in/courses/110105148

						Cour	se Artio	culation	Matri:	x: (Mapp	oing of C	Os with	POs and	PSOs)				
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO	101	102	100	10.	100	100	10,	100	10)	1010	1011	1012	1501	1502	1500	150.	1555	1500
CO1	2	1	1		3	2								2	3		1	
CO2	3	2		2	2		1						1	2		3		
CO3	2	3		1		2	3						1		3	2	2	
CO4	2	3	3		1	1							3	3	2		1	
CO5	1	2		2			2						2	2	3	1		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2018	3-19						
Course Code	CS327	Title of the Course	Human Computer Interaction (HCI)	L	T	P	C
Year	Third	Semester	Sixth	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• Be • Be	familiar with the desig	Human Computer Interaction on technologies for individuals and persons with disabilition on Computer interaction. Isser interface	ies			

	Course Outcomes
CO1	Understand a definition of interaction design and human-computer interaction
CO2	Illustrates the concepts of usability, user experience and user-centered design, the lifecycle model of interaction design.
CO3	Understand the structure of models and theories of human computer interaction and vision.
CO4	Discuss mobile HCI ,designs and tools
CO5	Design an interactive web interface on the basis of models studied.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Human Interaction	History and Introduction to Human Computer Interaction (HCI Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements – interactivity- Paradigms.	8	CO1				
2	Interactive Design	Interactive Design basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.	8	CO2				
3	Cognitive Models	Communication and collaboration models-Hypertext, Multimedia and www.						
4	Mobile Ecosystem	Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications:						
5	Web Interface Designing	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.	8	CO5				
Referen	ce Books:							
1.	Human – Computer In	teraction. Alan Dix, Janet Fincay, Gre Goryd, Abowd, Russell Bealg, Pearson. (Unit 1,2,3)						
2.	Brian Fling, "Mobile I	Design and Development", First Edition, OReilly Media Inc., 2009 (UNIT -4)						
3.	Designing the user in	terface. 3rd Edition Ben Shneidermann, Pearson Education Asia.						
4.	Bill Scott and Theresa	Neil, "Designing Web Interfaces", First Edition, OReilly, 2009. (UNIT-V).						
5.	User Interface Design	Soren Lauesen , Pearson Education.						
e-Leai	rning Source:							
	nptel.ac.in/courses/106	103115						

						Cour	se Arti	culation	n Matr	ix: (Map	ping of	COs with	n POs and	d PSOs)				
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	2	1	2	1		1							2	2		1	
		3	1		1		1							3			1	
CO2	3	1		2		2	1						3	3		1	2	
CO3		3	1	3		2							2	2	3	2		
CO4	2	3		3	1		2							3	2		1	
CO5	2	3	2			1	1						2	3	3	1	2	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-17											
Course Code	CS328	Title of the Course	E-Commerce	L	T	P	C				
Year	3 RD	Semester	6 TH	3	1	0	4				
Pre-Requisite	10+2 with Maths	Co-requisite									
Course Objectives	_		for business and management. It is designed stems, the technical foundation for understa				nts				

	Course Outcomes								
CO1	Understand the basic concepts and technologies used in the field of E-commerce								
CO2	Have the knowledge of the different types E-commerce.								
CO3	Understand the processes of developing and implementing information systems.								
CO4	Be aware of the ethical, social, and security issues of E-commerce.								
CO5	Have the knowledge of the different types of technical issues in e commerce and protocols.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	E-Business and E-Commerce	Definition of Electronic Commerce, E-Commerce: Technology and Prospects, Incentives for Engaging in Electronic Commerce, Needs of E-Commerce, Advantages and Disadvantages, Framework. E-Commerce Applications: E-Advertising, Entertainment, E-Marketing, Search Engines, E-Banking, Mobile Commerce, Online Trading, E-Shopping.	8	1
2	Architecture Framework of E- Commerce	Application Services, Brokerage and Data Management, Middleware Services and Network Infrastructure. Network Infrastructure for E- Commerce: Internet and Intranet based E-commerce- Issues, Problems and Prospects, Network Infrastructure, Network Access Equipment's, Broadband Telecommunication (ATM, ISDN, and FRAME RELAY)	8	2
3	Electronic Payments	Overview, The SET Protocol, Payment Gateway, Certificate, Digital Tokens ,Consumer Oriented E-Commerce Applications, Advantages and Risks, Types of Payment System (Credit Cards, E-Cash, Smart-Cards), etc.,Electronic Data Interchange: Non EDI System, Partial EDI System, Fully Integrated EDI System, Prerequisites for EDI. Issues of EDI: Legal Issues, Security Issues, Privacy Issues	8	3
4	Security Protocols	Open Systems Interconnection (OSI), TCP/IP, FTP, HTTP, SMTP, S-HTTP, SSL. Messaging Protocols: Basic Mail Protocol, Security Enhanced mail protocol. Web Security: Security Issues on Web, Importance of Firewall, Components of Firewall, Transaction Security, Emerging Client Server, Security Threats	8	4
5	E-Marketing Techniques	Search Engines, Directories, Registrations, Solicited Targeted E-mails, Interactive Sites, Spam Mails. Applications of 5P's (Product, Price, Place, Promotion, People).E-Advertising Techniques: Banners, Sponsorships, Portals, Online Coupons. Mobile Commerce: Introduction, Wireless Application Protocol, WAP Technology.	8	5

Reference Books:

David Whiteley, "E-Commerce", Tata McGraw Hill, 2000.

Greenstein and Feinman, "Electronic Commerce – Security: Risk Management & Control", McGraw-Hill, 1999

Ravi Kalakota and A.B. Whinston, "Frontiers of Electronic Commerce", Pearson Education, 2005.

"A Beginner's Guide (Sixth Edition)" by Herbert Schildt. Eframi Turban, Jae Lee, David King, K. Michale Chung, "Electronic Commerce", Pearson Education, 2000.

e-Learning Source:

www.wix.com

www.prestashop.com

www.coursera.org

www.teachee.com

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO-PSO		P	РО															
CO	PO1	O 2	3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
CO1	3	2	2	1		3	1	2		3		3		3		1	3	1
CO2	2	2	2		3	1	1	3		2	1	3	2	1	3			
CO3	3	1	3	2	2	2			3		2	2	3		1	2	1	2
CO4	2	2	2	2	1	1	3		2	3	3	1	1	2	3			3
CO5	2	3	2	2	3	3	3			2	2	3		1		3	2	

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD